首页> 外文OA文献 >A Monte Carlo Power Analysis of Traditional Repeated Measures and Hierarchical Multivariate Linear Models in Longitudinal Data Analysis
【2h】

A Monte Carlo Power Analysis of Traditional Repeated Measures and Hierarchical Multivariate Linear Models in Longitudinal Data Analysis

机译:传统重复测度和层次结构的蒙特卡罗功率分析 纵向数据分析中的多元线性模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The power properties of traditional repeated measures and hierarchical linear models have not been clearly determined in the balanced design for longitudinal studies in the current literature. A Monte Carlo power analysis of traditional repeated measures and hierarchical multivariate linear models are presented under three variance-covariance structures. Results suggest that traditional repeated measures have higher power than hierarchical linear models for main effects, but lower power for interaction effects. Significant power differences are also exhibited when power is compared across different covariance structures. Results also supplement more comprehensive empirical indexes for estimating model precision via bootstrap estimates and the approximate power for both main effects and interaction tests under standard model assumptions.
机译:在当前文献的纵向研究的平衡设计中,尚未明确确定传统重复测量和分层线性模型的功效。在三个方差-协方差结构下,提出了传统的重复测量和分层多元线性模型的蒙特卡洛幂分析。结果表明,对于主效应,传统的重复测量具有比分层线性模型更高的功效,但对于交互效应,具有更低的功效。在不同协方差结构之间比较功率时,也会显示出显着的功率差异。结果还补充了更全面的经验指标,以便通过引导估计以及标准模型假设下主要效果和交互作用测试的近似功效来估计模型精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号